@stdlib/blas-ext-base-dnanasumors
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.5 • Public • Published

    dnanasumors

    NPM version Build Status Coverage Status dependencies

    Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

    The L1 norm is defined as

    L1 norm definition.

    Installation

    npm install @stdlib/blas-ext-base-dnanasumors

    Usage

    var dnanasumors = require( '@stdlib/blas-ext-base-dnanasumors' );

    dnanasumors( N, x, stride )

    Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
    var N = x.length;
    
    var v = dnanasumors( N, x, 1 );
    // returns 5.0

    The function has the following parameters:

    • N: number of indexed elements.
    • x: input Float64Array.
    • stride: index increment for x.

    The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) every other element in x,

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
    var N = floor( x.length / 2 );
    
    var v = dnanasumors( N, x, 2 );
    // returns 5.0

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    
    var N = floor( x0.length / 2 );
    
    var v = dnanasumors( N, x1, 2 );
    // returns 9.0

    dnanasumors.ndarray( N, x, stride, offset )

    Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
    var N = x.length;
    
    var v = dnanasumors.ndarray( N, x, 1, 0 );
    // returns 5.0

    The function has the following additional parameters:

    • offset: starting index for x.

    While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) every other value in x starting from the second value

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var N = floor( x.length / 2 );
    
    var v = dnanasumors.ndarray( N, x, 2, 1 );
    // returns 9.0

    Notes

    • If N <= 0, both functions return 0.0.
    • Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var Float64Array = require( '@stdlib/array-float64' );
    var dnanasumors = require( '@stdlib/blas-ext-base-dnanasumors' );
    
    var x;
    var i;
    
    x = new Float64Array( 10 );
    for ( i = 0; i < x.length; i++ ) {
        if ( randu() < 0.2 ) {
            x[ i ] = NaN;
        } else {
            x[ i ] = round( randu()*100.0 );
        }
    }
    console.log( x );
    
    var v = dnanasumors( x.length, x, 1 );
    console.log( v );

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2021. The Stdlib Authors.

    Install

    npm i @stdlib/blas-ext-base-dnanasumors

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    13

    Version

    0.0.5

    License

    Apache-2.0

    Unpacked Size

    76.7 kB

    Total Files

    21

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser