Natural Preference for Minification
Get unlimited public & private packages + team-based management with npm Teams.Learn more »

@spatial/clusters-kmeans

1.0.5 • Public • Published

@spatial/clusters-kmeans

clustersKmeans

Takes a set of points and partition them into clusters using the k-mean . It uses the k-means algorithm

Parameters

  • points FeatureCollection<Point> to be clustered
  • options Object Optional parameters (optional, default {})
    • options.numberOfClusters number numberOfClusters that will be generated (optional, default Math.sqrt(numberOfPoints/2))
    • options.mutate boolean allows GeoJSON input to be mutated (significant performance increase if true) (optional, default false)

Examples

// create random points with random z-values in their properties
var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
var options = {numberOfClusters: 7};
var clustered = turf.clustersKmeans(points, options);
 
//addToMap
var addToMap = [clustered];

Returns FeatureCollection<Point> Clustered Points with an additional two properties associated to each Feature:- {number} cluster - the associated clusterId

  • {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]

This module is part of the Turfjs project, an open source module collection dedicated to geographic algorithms. It is maintained in the Turfjs/turf repository, where you can create PRs and issues.

Installation

Install this module individually:

$ npm install @spatial/clusters-kmeans

Or install the Turf module that includes it as a function:

$ npm install @turf/turf

Install

npm i @spatial/clusters-kmeans

DownloadsWeekly Downloads

5

Version

1.0.5

License

MIT

Unpacked Size

14.3 kB

Total Files

7

Last publish

Collaborators

  • avatar
  • avatar