@sequencework/tfjs-node
    TypeScript icon, indicating that this package has built-in type declarations

    0.3.0 • Public • Published

    TensorFlow backend for TensorFlow.js via Node.js

    This repo is under active development and is not production-ready. We are actively developing as an open source project.

    Installing

    TensorFlow.js for Node currently supports the following platforms:

    Other Linux variants might also work but this project matches core TensorFlow installation requirements.

    Installing CPU TensorFlow.js for Node:

    npm install @tensorflow/tfjs-node
    (or)
    yarn add @tensorflow/tfjs-node

    Installing Linux/Windows GPU TensorFlow.js for Node:

    npm install @tensorflow/tfjs-node-gpu
    (or)
    yarn add @tensorflow/tfjs-node-gpu

    Windows Requires Python 2.7

    Windows build support for node-gyp requires Python 2.7. Be sure to have this version before installing @tensorflow/tfjs-node or @tensorflow/tfjs-node-gpu. Machines with Python 3.x will not install the bindings properly.

    For more troubleshooting on Windows, check out WINDOWS_TROUBLESHOOTING.md.

    Mac OS X Requires Xcode

    If you do not have Xcode setup on your machine, please run the following commands:

    $ xcode-select --install

    After that operation completes, re-run yarn add or npm install for the @tensorflow/tfjs-node package.

    You only need to include @tensorflow/tfjs-node or @tensorflow/tfjs-node-gpu in the package.json file, since those packages ship with @tensorflow/tfjs already.

    Using the binding

    Before executing any TensorFlow.js code, import the node package:

    // Load the binding
    import * as tf from '@tensorflow/tfjs-node';
     
    // Or if running with GPU:
    import * as tf from '@tensorflow/tfjs-node-gpu';

    Note: you do not need to add the @tensorflow/tfjs package to your dependencies or import it directly.

    Development

    # Download and install JS dependencies, including libtensorflow 1.8. 
    yarn
     
    # Run TFJS tests against Node.js backend: 
    yarn test
    # Switch to GPU for local development: 
    yarn enable-gpu

    MNIST demo for Node.js

    See the tfjs-examples repository for training the MNIST dataset using the Node.js bindings.

    Optional: Build libtensorflow From TensorFlow source

    This requires installing bazel first.

    bazel build --config=monolithic //tensorflow/tools/lib_package:libtensorflow

    Keywords

    none

    Install

    npm i @sequencework/tfjs-node

    DownloadsWeekly Downloads

    0

    Version

    0.3.0

    License

    Apache-2.0

    Unpacked Size

    13.9 MB

    Total Files

    110

    Last publish

    Collaborators

    • lucleray