Need private packages and team management tools?Check out npm Teams »

@google-cloud/automl

1.10.1 • Public • Published
Google Cloud Platform logo

Cloud AutoML: Node.js Client

release level npm version codecov

Cloud AutoML API client for Node.js

Read more about the client libraries for Cloud APIs, including the older Google APIs Client Libraries, in Client Libraries Explained.

Table of contents:

Quickstart

Before you begin

  1. Select or create a Cloud Platform project.
  2. Enable billing for your project.
  3. Enable the Cloud AutoML API.
  4. Set up authentication with a service account so you can access the API from your local workstation.

Installing the client library

npm install @google-cloud/automl

Using the client library

  const automl = require('@google-cloud/automl');
  const fs = require('fs');
 
  // Create client for prediction service.
  const client = new automl.PredictionServiceClient();
 
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`;
  // const computeRegion = `region-name, e.g. "us-central1"`;
  // const modelId = `id of the model, e.g. “ICN723541179344731436”`;
  // const filePath = `local text file path of content to be classified, e.g. "./resources/flower.png"`;
  // const scoreThreshold = `value between 0.0 and 1.0, e.g. "0.5"`;
 
  // Get the full path of the model.
  const modelFullId = client.modelPath(projectId, computeRegion, modelId);
 
  // Read the file content for prediction.
  const content = fs.readFileSync(filePath, 'base64');
 
  const params = {};
 
  if (scoreThreshold) {
    params.score_threshold = scoreThreshold;
  }
 
  // Set the payload by giving the content and type of the file.
  const payload = {};
  payload.image = {imageBytes: content};
 
  // params is additional domain-specific parameters.
  // currently there is no additional parameters supported.
  const [response] = await client.predict({
    name: modelFullId,
    payload: payload,
    params: params,
  });
  console.log(`Prediction results:`);
  response.payload.forEach(result => {
    console.log(`Predicted class name: ${result.displayName}`);
    console.log(`Predicted class score: ${result.classification.score}`);
  });
 

Samples

Samples are in the samples/ directory. The samples' README.md has instructions for running the samples.

Sample Source Code Try it
Batch_predict source code Open in Cloud Shell
Delete_dataset source code Open in Cloud Shell
Delete_model source code Open in Cloud Shell
Deploy_model source code Open in Cloud Shell
Export_dataset source code Open in Cloud Shell
Get_dataset source code Open in Cloud Shell
Get_model source code Open in Cloud Shell
Get_model_evaluation source code Open in Cloud Shell
Get_operation_status source code Open in Cloud Shell
Import_dataset source code Open in Cloud Shell
Language_entity_extraction_create_dataset source code Open in Cloud Shell
Language_entity_extraction_create_model source code Open in Cloud Shell
Language_entity_extraction_predict source code Open in Cloud Shell
Language_sentiment_analysis_create_dataset source code Open in Cloud Shell
Language_sentiment_analysis_create_model source code Open in Cloud Shell
Language_sentiment_analysis_predict source code Open in Cloud Shell
Language_text_classification_create_dataset source code Open in Cloud Shell
Language_text_classification_create_model source code Open in Cloud Shell
Language_text_classification_predict source code Open in Cloud Shell
List_datasets source code Open in Cloud Shell
List_model_evaluations source code Open in Cloud Shell
List_models source code Open in Cloud Shell
List_operation_status source code Open in Cloud Shell
Quickstart source code Open in Cloud Shell
Translate_create_dataset source code Open in Cloud Shell
Translate_create_model source code Open in Cloud Shell
Translate_predict source code Open in Cloud Shell
Undeploy_model source code Open in Cloud Shell
Vision_classification_create_dataset source code Open in Cloud Shell
Vision_classification_create_model source code Open in Cloud Shell
Vision_classification_deploy_model_node_count source code Open in Cloud Shell
Vision_classification_predict source code Open in Cloud Shell
Vision_object_detection_create_dataset source code Open in Cloud Shell
Vision_object_detection_create_model source code Open in Cloud Shell
Vision_object_detection_deploy_model_node_count source code Open in Cloud Shell
Vision_object_detection_predict source code Open in Cloud Shell

The Cloud AutoML Node.js Client API Reference documentation also contains samples.

Versioning

This library follows Semantic Versioning.

This library is considered to be General Availability (GA). This means it is stable; the code surface will not change in backwards-incompatible ways unless absolutely necessary (e.g. because of critical security issues) or with an extensive deprecation period. Issues and requests against GA libraries are addressed with the highest priority.

More Information: Google Cloud Platform Launch Stages

Contributing

Contributions welcome! See the Contributing Guide.

License

Apache Version 2.0

See LICENSE

Install

npm i @google-cloud/automl

DownloadsWeekly Downloads

17,069

Version

1.10.1

License

Apache-2.0

Unpacked Size

7.39 MB

Total Files

128

Last publish

Collaborators

  • avatar