Noiseless Peaceful Morning

    @aws-solutions-constructs/aws-apigateway-sagemakerendpoint
    TypeScript icon, indicating that this package has built-in type declarations

    2.12.0 • Public • Published

    aws-apigateway-sagemakerendpoint module


    Stability: Experimental

    All classes are under active development and subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


    Reference Documentation: https://docs.aws.amazon.com/solutions/latest/constructs/
    Language Package
    Python Logo Python aws_solutions_constructs.aws_apigateway_sagemakerendpoint
    Typescript Logo Typescript @aws-solutions-constructs/aws-apigateway-sagemakerendpoint
    Java Logo Java software.amazon.awsconstructs.services.apigatewaysagemakerendpoint

    Overview

    This AWS Solutions Construct implements an Amazon API Gateway connected to an Amazon SageMaker endpoint pattern.

    Here is a minimal deployable pattern definition:

    Typescript

    import { Construct } from 'constructs';
    import { Stack, StackProps } from 'aws-cdk-lib';
    import { ApiGatewayToSageMakerEndpoint, ApiGatewayToSageMakerEndpointProps } from '@aws-solutions-constructs/aws-apigateway-sagemakerendpoint';
    
    // Below is an example VTL (Velocity Template Language) mapping template for mapping the Api GET request to the Sagemaker POST request
    const requestTemplate = `
    {
        "instances": [
            # set( $user_id = $input.params("user_id") )
            # set( $items = $input.params("items") )
            # foreach( $item in $items.split(",") )
            # if( $foreach.hasNext ),#end
            {"in0": [$user_id], "in1": [$item]}
                $esc.newline
            # end
        ]
    }`
    
    // Replace 'my-endpoint' with your Sagemaker Inference Endpoint
    new ApiGatewayToSageMakerEndpoint(this, 'test-apigw-sagemakerendpoint', {
      endpointName: 'my-endpoint',
      resourcePath: '{user_id}',
      requestMappingTemplate: requestTemplate
    });

    Python

    from aws_solutions_constructs.aws_apigateway_sagemakerendpoint import ApiGatewayToSageMakerEndpoint
    from aws_cdk import Stack
    from constructs import Construct
    
    # Below is an example VTL (Velocity Template Language) mapping template for mapping the Api GET request to the Sagemaker POST request
    request_template = """
    {
        "instances": [
            # set( $user_id = $input.params("user_id") )
            # set( $items = $input.params("items") )
            # foreach( $item in $items.split(",") )
            # if( $foreach.hasNext ),#end
            {"in0": [$user_id], "in1": [$item]}
                $esc.newline
            # end
        ]
    }"""
    
    # Replace 'my-endpoint' with your Sagemaker Inference Endpoint
    ApiGatewayToSageMakerEndpoint(self, 'test-apigw-sagemakerendpoint',
                                    endpoint_name='my-endpoint',
                                    resource_path='{user_id}',
                                    request_mapping_template=request_template
                                    )

    Java

    import software.constructs.Construct;
    
    import software.amazon.awscdk.Stack;
    import software.amazon.awscdk.StackProps;
    import software.amazon.awsconstructs.services.apigatewaysagemakerendpoint.*;
    
    // Create an example VTL (Velocity Template Language) mapping template for mapping the Api GET request to the Sagemaker POST request
    final String requestTemplate = "{"
            + "\"instances\": ["
            + "# set( $user_id = $input.params(\"user_id\") )"
            + "# set( $items = $input.params(\"items\") )"
            + "# foreach( $item in $items.split(\",\") )"
            + "# if( $foreach.hasNext ),#end"
            + "{\"in0\": [$user_id], \"in1\": [$item]}"
            + "    $esc.newline"
            + "# end"
            + "]"
            + "}";
    
    // Replace ""my-endpoint"" with your Sagemaker Inference Endpoint
    new ApiGatewayToSageMakerEndpoint(this, "ApiGatewayToSageMakerEndpointPattern",
            new ApiGatewayToSageMakerEndpointProps.Builder()
                    .endpointName("my-endpoint")
                    .resourcePath("{user_id}")
                    .requestMappingTemplate(requestTemplate)
                    .build());

    Pattern Construct Props

    Name Type Description
    apiGatewayProps? api.RestApiProps Optional user-provided props to override the default props for the API Gateway.
    apiGatewayExecutionRole? iam.Role IAM Role used by API Gateway to invoke the SageMaker endpoint. If not specified, a default role is created with access to endpointName.
    endpointName string Name of the deployed SageMaker inference endpoint.
    resourceName? string Optional resource name where the GET method will be available.
    resourcePath string Resource path for the GET method. The variable defined here can be referenced in requestMappingTemplate.
    requestMappingTemplate string Mapping template to convert GET requests received on the REST API to POST requests expected by the SageMaker endpoint.
    responseMappingTemplate? string Optional mapping template to convert responses received from the SageMaker endpoint.
    logGroupProps? logs.LogGroupProps User provided props to override the default props for for the CloudWatchLogs LogGroup.

    Pattern Properties

    Name Type Description
    apiGateway api.RestApi Returns an instance of the API Gateway REST API created by the pattern.
    apiGatewayRole iam.Role Returns an instance of the iam.Role created by the construct for API Gateway.
    apiGatewayCloudWatchRole? iam.Role Returns an instance of the iam.Role created by the construct for API Gateway for CloudWatch access.
    apiGatewayLogGroup logs.LogGroup Returns an instance of the LogGroup created by the construct for API Gateway access logging to CloudWatch.

    Sample API Usage

    Note: Each SageMaker endpoint is unique, and the response from the API will depend on the deployed model. The example given below assumes the sample from this blog post. For a reference on how that'd be implemented, please refer to integ.apigateway-sagemakerendpoint-overwrite.ts.

    Method Request Path Query String SageMaker Action Description
    GET /321 items=101,131,162 sagemaker:InvokeEndpoint Retrieves the predictions for a specific user and items.

    Default settings

    Out of the box implementation of the Construct without any override will set the following defaults:

    Amazon API Gateway

    • Deploy an edge-optimized API endpoint
    • Enable CloudWatch logging for API Gateway
    • Configure least privilege access IAM role for API Gateway
    • Set the default authorizationType for all API methods to IAM
    • Enable X-Ray Tracing
    • Validate request parameters before passing data to SageMaker

    Architecture

    Architecture Diagram


    © Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.

    Install

    npm i @aws-solutions-constructs/aws-apigateway-sagemakerendpoint

    DownloadsWeekly Downloads

    961

    Version

    2.12.0

    License

    Apache-2.0

    Unpacked Size

    233 kB

    Total Files

    15

    Last publish

    Collaborators

    • aws-solutions-constructs-team